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The steady incompressible Navier-Stokes equations in a 2D driven cavity are solved in 
primitive variables by means of the multigrid method. The pressure and the components of the 
velocity are discretized on staggered grids, a block-implicit relaxation technique is used to 
achieve a good convergence and a simplified FMG-FAS algorithm is proposed. Special focus 
on the finite differences scheme used to approach the convection terms is made and a large 
discussion with other schemes is given. Results in a square driven cavity are obtained for 
Reynolds numbers as high as 15,000 on line uniform meshes and the solution is in good 
agreement with other studies. For Re = 5OOO the secondary vortices are very well represented 
showing the robustness of the method. For Reynolds numbers higher than 5000 the loss of 
stability for the steady solution is discussed. Moreover, some computations on a rectangular 
cavity of aspect ratio equal to two are presented. In addition the method is very efficient as 
far as CPU time is concerned;’ for instance, the solution for Re = 1000 on a 128 x 128 grid is 
obtained within 24 s on a SIEMENS VP 200. 0 1990 Academic press, 1”~. 

In the seventies, following some first works such as [l], many numerical 
methods were studied to solve the incompressible Navier-Stokes equations. These 
methods gave first indications on the shape of the solutions for Reynolds numbers 
up to 1000 but where limited by the lack of capacity of the computers. A quite 
exhaustive survey can be found in [2,3]. Today with the development of powerful 
computers with large memory and vector processors a new era of scientific com- 
puting is coming. In particular one can expect to make signilicant progress 
involving Navier-Stokes equations, to observe the transition to turbulence as done 
in [4], and in the future to compute turbulent flows; according to Kolmogorov and 
[5], this will need as many degrees of freedom as Regi4 in three dimensions. Such 
an amount of grid points for a high Reynolds number requires huge memory which 
is not available yet; but some work can already be done, in particular, in two 
dimensions. In this work we solve steady flows in a driven cavity and our aim is 
to observe, on one hand, solutions exhibiting good representation of secondary 
vortices for large Reynolds numbers and, on the other hand, the transition to 
turbulence. 

Many approaches have been proposed this last decade to compute solutions of 
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Navier-Stokes equations, among them the spectral method, the linearization 
methods and the multigrid method. The spectral or pseudo-spectral methods give 
good results for natural convection (see, for instance, [6] and references therein). 
They can also be used for the regularized driven cavity problem [7]. The lineariza- 
tion by Newton’s method either with a velocity-pressure formulation [4] or with 
a stream function-vorticity formulation [8] and finally the multigrid method in 
primitive variables [9] or in flow variables [lo] are currently used. All these 
methods- yield about the same steady solution for Re = 1000 and some good 
solutions for Re as high as 5000 or 10,000; nevertheless for these high Reynolds 
numbers there are some noticeable discrepancies from one method to an other. 

In brief we can say that everyone agrees on the main characteristics of the flow 
in a square cavity: the presence of a large primary vortex the center of which moves 
to the center of gravity of the square cavity as Re increases, the apparition of 
secondary vortices in the bottom corners and then in the corner of the incoming 
flow, the formation of quite large tertiary corner vortices for high Reynolds 
numbers [ll]. But there is quite poor representation of these small structures 
in the corners and along the walls of the cavity. In [12] a local grid refinement 
procedure permits to capture, in a bottom corner, Moffat vortices with geometric 
progression scaling in good agreement with the theory; this shows that small 
phenomena occuring in the boundary layer can be obtained by numerical methods 
if there are enough points to represent them. The questions are: are there other 
eddies than Moffat eddies? And if there are other eddies, where are they located, 
how do they appear when the Reynolds number increases, and what is their role in 
the route to turbulence? 

In this work we try to give an answer to this question by computing the solution 
on line grids for high Reynolds numbers in a square driven cavity and in a 
rectangular one of aspect ratio two; the comparison of these two cases shows that 
some difficulties, occurring in the square driven cavity for Re > 5000, can appear 
already for Re = 1000 in the rectangular one where the flow is much more unstable 
c131. 

After some recalls on the equations, we present in this paper a FMG-FAS (full 
multigrid-full approximation storage) algorithm with simplified control tests and 
use the SCGS (symmetrical coupled Gauss-Seidel) smoothing procedure proposed 
in [9]. Then we study several finite difference schemes approximating the convec- 
tion terms and show the influence of local testing of the velocity sign on one hand 
and second-order uncentered approximation of derivatives on the other hand to get 
an efficient scheme. Here, by efficient, we mean that the scheme is able to represent 
the solution as soon as there are enough points in the boundary layer. Finally we 
give results on grids as line as 512 x 512 and a range of Reynolds number between 
100 and 15,000 for the square cavity and between 100 and 1000 for the rectangular 
cavity of aspect ratio two. The results are compared with those obtained in 
[S-lo, 141 for Reynolds numbers less than or equal to 5000. For higher Reynolds 
numbers we observe the appearance of small eddies along the walls and conjecture 
that they play a significant role in the transition to turbulence. 
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1. MATHEMATICAL PROBLEM AND APPROXIMATION 

The non-dimensional Navier-Stokes equations of an incompressible viscous fluid 
in two dimensions are written as follows in primitive variables, 

-&lu+u~+u~+~=o ay ax 

--J--du+~;+D(?L‘+P,o 
ay ay 

(1.1) 

“+“=O, 
ax ay 

where q = (u, u)’ and p denote the velocity and the pressure, respectively. The 
Reynolds number we speak of in this paper is the one appearing in equations (1.1) 
although it is representative neither of the macro structures nor of the micro struc- 
tures; but it is better to take this one to compare with other authors. This work 
concerns only the well-known driven cavity problem, so Eqs. (1.1) are set in a 
domain Q = (0, 1) x (0, b) with b = 1 or 2 and are associated to the following 
Dirichlet boundary conditions: 

u=l on I= (0, 1) x (6) 

u=o on asz\r (1.2) 

u=o on asz. 

Once again one could contest such a discontinuous boundary condition for U, in 
particular with spectral method u = 1 would be replaced by u = (1 - (2x - 1)2)2, for 
instance, but for comparison we take condition (1.2) even if it is not the best one; 
moreover, this discontinuity is not the main difficulty. Indeed the difficulties are, as 
it is well known, the representation of the pressure defined within an arbitrary 
constant and the treatment of the non-linear convection terms. We shall see in the 
next sections how to avoid the first difficulty and how to treat the second one. 

Let us rewrite Eqs. ( 1.1) in the form 

N(u, u)+Vp=O 

Div q = 0, 
(1.3) 

where N(u, u) is the sum of linear diffusion terms D(u, u) and non-linear convection 
terms C(u, u); we approximate these operators by finite differences on staggered 
grids with the pressure given at the center of a cell and the components of the 
velocity given at the middle of the sides as usual (see Fig. 1). 

Let G, be the fine grid on which we are looking for the solution; we use centered 
finite differences to approximate the linear terms. So on the cell (i, j) we have for 
the variables ui- l,z,j, ui,jP 1,2, and pi,j the formulas, 
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FIG. 1. Pressure and velocity in the cell (i, j). 

CD/(4 u)l(i, j) = 

lY,Pl(i, j) = 

I 

&(Pi,j-Pi-l,j) 

$(p,,j-Pi,j-I) 

(1.4) 

where u, u, p are the discretized variables on the grid G, and Ax and Ay are the size 
of the uniform mesh in the x and y direction, respectively. 

In addition we propose in this paper to approximate the nonlinear convection 
term [C,(U, u)]~~,~, as follows for the first component: 

! 
un-l r-l,j (4Ui- l/2,, - 5urTij2,j + uyI:/2,j) 

3Ax 
if u~:~,~>O 

n-1 

3.L (4Ui- 1,z.j - 

-3Ax 5ulYi/2.j + 'YY:j*,j) if u;,: ’ < 0 
(1.5a) 

n-l 
ui-;“;;,- l/* (4UiL l/2, j- 5u~I:,2,j- l + 141,:*jp2) if ucI:/2,j- 1,~ > 0 

+ n-l 
-ui-yi; ‘I2 (hi- l/z,j- Z!JU~T:/~,~+ 1 - UrI:/2,j+2) if C2,2,J + 1/2 <O 
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and for the second component: 

II- 1 

ui,i-1 (4u,,,- 112 
3 AY 

- y-$2 + q-:5,,) 

+ 
0 - I 

Q- (4Vi i- l/2 
- 3 Ay ‘. - 5v;,-,‘I,2 + q-:3,2) 
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We shall see in detail in Section 4 how this scheme is constructed. We cannot do 
it now because we need to describe the relaxation solver first. 

In summary we get a nonlinear finite dimensional operator L, and we have to 
solve: 

Mu, v, PI = 0 = fi. (1.6) 

2. MULTIGRID PROCEDURE 

In order to solve (1.6) we use a FMG-FAS algorithm. So that this paper may be 
relatively self-contained we briefly described these multigrid procedures; for more 
details the reader is refered to [ 15, 161. The Full Approximation Storage algorithm 
consists in evaluating a residue, projecting this residue on a coarser grid, computing 
a corrector on this coarse grid, then extending this corrector to the line grid, and 
correcting the previous solution. One step can be summarized for a linear problem 
on two consecutive grids, G, and Gk _ i , 

Solve Lk(Uk, Ukr Pk)=fk 

rk = fk - Lk(Uk3 vk3 Pk) 

fk--l=pt-Irk (2.1) 

soheLk-l(uk-l~ vk-L,Pk--l)=fk-l 

c”k, vk, Pk)‘tUk, vk, Pk)+E:-l(Uk-,, vk-l, Pk-,), 

where (&, vk, Pk) denote the variables on the grid Gk, P: _ i is the projection 
operator from the grid Gk to the grid Gk- i and EE- ’ is the extension operator 
from the grid G,- , to the grid Gk. For a nonlinear problem the algorithm is 
slightly different and can be written in the form: 
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So1ve Lk(Uk3 vkj Pk) ‘fk 

rk=fk-LktUk? Ok2 Pk) 

i 

fk-,==~-lrk+Lk-,I(P::~l(Ukrvk,Pk)) 

soheLk-l(uk-l, vk-,,Pk-,)=fk-l 

(2.2) 

t”k> vk, Pk)+tUk, vk, Pk)+E:pl((Uk&l> vk&l, Pk4)-P:--I(Uk, vk, Pk)). 

For a set of grids (Gk),, ,,,..,/ the control of the algorithm to go down and up to 
the coarser and finer grids can be done in different ways; the usual one described 
in [9, 151 is driven by precision tests of the residual on the current grid. We notice 
that, with such a control, the FAS algorithm can go down and up between two 
levels for a long time and even never go up to the finest grid for high Reynolds 
numbers. So, as we solve L,(u,, vkr pk) = fk by a relaxation procedure, we use a 
much simpler control of the algorithm which consists in going down to the coarsest 
grid before going up, doing a fixed number of iterations on the intermediate grids, 
then going up to the finest grid. This FAS algorithm is illustrated on Fig. 2. 

The full Multigrid algorithm consists in solving the problem with the FAS 
algorithm on a starting grid Gk (k > 1) with the test rk Q&k before going up to a 
finer grid, then extending this solution to the grid Gk+ 1 and so on, until the finest 
grid. The only control on successive grids is the value of &k that is set to 

Ek=&+l, 6> 1. 

In practice for the simplified FMG-FAS procedure we take q = 1.2 and 6 = 4. That 
means that we allow local divergence between two iterates and require less 
precision on coarse grids than on line grids. In addition, we take NBDOWN = 2, 
NBUP = 1, and NBl = 10 for a 4 x 4 coarsest grid (obviously this last number 
depends on the choice of the coarsest grid). Our experience is that it is not 
necessary to do numerous iterations of relaxation during the going down or the 
going up and that 2 and 1 seem to be the best choices to reduce the CPU time. 
Nevertheless, we need to do more iterations on the coarsest grid to have a good 
predictor; we can either impose such a fixed number of iterations or require a 
precision test as follows: 

llrlII be1 = lop2 l(r,II. 

In other words, when we approach the convergence on the finest grid we require 
llrlll < lo-‘&, on the coarsest grid. 

Let us complete this section with the definition of PE ~ 1 and Et- ‘. These opera- 
tions represent a tiny part of the CPU time; so we can take good interpolations in 
order to decrease the number of global iterations on the finest grid. The projection 
operator is defined by: 
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START 

et : required precision on grid G, 

rx : residual on grid G, 

pr : previous residual on grid GC 

11 : coefficient of allowed divergence rate 

FIG. 2. Organization chart of simplitied FAS 

i 

("k~I)i~I/2,~=~((uk)2~-3/2,2j+(uk)2i~3/2,2j-~1) 

+ $((“k)*ip5/*,2, +(“!f)2ipl/2,?/+ (“k)2r-S/2,2~pl + (“k)2ibl:2,2,pl) 

(“k-*)i,j-1/2=~((uk)2i,2j~3/2+(uk)2i~1,2j-3/2) 

+ k((‘k)2,2jp5/2+ (‘k)2i,2,- 1;2+ @k)2i- l,2,-5/2+(“X)2i-I.2,- l/2) 

(Pk~I)i,j=t((Pk)Zi~1,2j+(Pk)Zi,2j+ (P!f)2r-1.3 I +(Pk)Zi.Zj-1). 
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For the extension operator it is more important to have an accurate interpolation, 
especially when we extend a converged solution in the FMG procedure; otherwise 
we lose some information on the finer grid and need more iterations. So the exten- 
sion operator is defined by: 

(“k)2i-.3/*,2j+1= ~~~~uI,~l~i-3/2,j+l+2~u~~I~i~I/2,~+l+~u~--l~i+l/2,j+l~ 

+5(C”k-l)i- 3/2, j + 2(uk- 1 )iL l/2, j + t”k- 1 )i+ l/2, j) 

+~((~k-I)i~3,2,,-l+2(Uk-l)i-1/2,j~1+(Uk-~I)i+1/2,,--I) 

t”k)2i- 1/2,2j - 1 = - a(%IL 1/2,j+l+(“k-l)i+l/2,j+l 1 

+ NUk- IL 1/2,j+(“k-l)i+l/2,j) 

+~~~U~~l~i-l/2,j-l+~U~-l~i+l!2,j-l~ 

(“/c)2i-l,2jp3/2= ~~~~y~~l~i+l,j-3~2+2~u~-l~i+l,~-l/2+~u~~l~i+l,~+1/2~ 

+~~~U~~l~i,j~3/2+2~u~~l~i,~-l/2+~U~~l~r,j+*/2~ 

+~~~u~-l~i~l,j~3/2+2~u~~~~i-l,~-1/2+~o~-l~i~l,j+1/2~ 

(“k)2i-11,2j-I/2= -&((“k~I)i+l,j-l/2+ C”k-l)i+ I,j+l/Z) 

+ $(C”k- l)i, j- 1/z+ (4pI)i,,+1,2) 

+~~~“~~l~i~l,j-I/2+~u~-l~i- l,J+ 112 1 

(Pk)2i,2j=~(3(Pk~I)i,j+l+(Pk~l)i+l,j+l+9(~k~l)i,j+3(~k~l)~+1,,j)’ 

3. RELAXATION PROCEDURE 

In the multigrid technique the choice of the relaxation procedure plays an impor- 
tant role in the efficiency of the method. We use the smoothing operator, proposed 
in [9], called the symmetrical coupled Gauss-Seidel procedure (SCGS) which 
consists in a cell by cell under-relaxation procedure. This technique is satisfying 
because it leads us to solve the problem in a control volume, here a cell, and to 
update the solution in this control volume. That means, with staggered grids, that 
the five unknowns of a cell (i, j) are computed simultaneously by solving a 5 x 5 
linear system of the form: 

a11 0 0 0 l/Ax 
0 a22 0 0 - l/Ax 

0 0 a33 0 ~/AY 
0 0 0 a44 - ~/AY 

-l/Ax l/Ax - l/Ay l/Ay 0 t 

Ui- l/2, j 

ui+ 112, j 

ui, j ~ l/2 

Oi.j+ l/2 

Phi 

(3.1) 
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TABLE I 

Value of the Relaxation Parameter with the Scheme (1.4k(1.5) 

Re 100 400 1000 5000 10,000 

Domain (0.1) x (0.1) 1 0.9 0.7 0.3 0.2 
Domain (0.1) x (0.2) 0.8 0.3 0.1 

where the diagonal terms contain the diagonal contributions of D(u, u) and C(u, u) 
and the second members contain all the remaining terms of L, and the second 
member fk. We could have put some other terms in the matrix to intensify the 
interaction between the unknowns but it seems that such a choice with dominant 
positive terms on the main diagonal is more efficient. We shall see in the next 
section how to approximate the convection terms to improve this property. After 
computing the live unknowns on a cell we update the live corresponding variables 
by under-relaxation, for instance, we have 

u’- l/Q j = ox- 1,2,j+ (1 -0) G/2,,’ O<w<l, (3.2) 

where n is the index of relaxation iterations. Then we solve the problem on the next 
cell. So, during one iteration, the pressure is updated once and the velocity twice 
because the components are given on the sides of the cells. In addition we choose 
a global cell by cell computation from the top to the bottom of the cavity to take 
immediately into account the driven condition. We conclude this section by giving 
the value of the optimal under-relaxation parameter w for various Reynolds 
numbers in the square cavity and in the rectangular one in Table I. In fact this 
parameter is closely related to the solution itself, so for a given geometry it depends 
only on Re but there is a large difference from one geometry to another. 

4. UNCENTERED SCHEMES FOR CONVECTION TERMS 

In this section we analyze in details the influence of the discretization of the con- 
vection terms to the computed solution as announced in Section 1. The multigrid 
procedure with smoothing operator described above gives good efficiency but does 
not have any influence on the solution. On the contrary the approximation of 
convection terms has a huge influence on the obtained solution except for small 
Reynolds numbers (Re < lOO), where every scheme gives a good solution within a 
few iterations; even the centered scheme written for uiP 1/Z, j and ui, jP i,*, 
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where the unknown values u:j=’ 1/Z and v~:~,, j are computed by linear interpolation 
of the four known neighbours. Replacing formula (1.5), this formula completes 
formulas (1.4); we see that it adds terms on the main diagonal of matrix (3.1) with 
amPpIositive 11 - 1 or negative sign according to the sign of u;&, - uiP3,2, j and 

n-l 
vi,j+1/2-vi,j-3/2. This plays a significant role in the behaviour of the centered 
scheme that is good for small Reynolds numbers but very unstable and dispersive 
as soon as Re increases. Moreover, the centered scheme does not take into account 
the hyperbolic behaviour of the convection terms. So for these terms the first idea 
is to use an upwind scheme given for the first unknown uiP 1,2, j by: 

otherwise 

if v~:j,, j>O 

otherwise. 
(4.2) 

Now this scheme is sensitive to the propagation of the information with hyperbolic 
terms and, besides, the additional terms on the main diagonal of the matrix (3.1) 
are always positive. Consequently this scheme is stable for high Reynolds numbers 
but, as it is often the case for uncentered first-order schemes (see, for instance, 
[17]) it is very diffusive. So both the location and the amplitude of the extrema of 
the velocity profiles are uncorrect as shown on Fig. 3 for Re = 1000 on a medium 
64 x 64 grid. 

V 

0. 

0. 1. 
I 

FIG. 3. Comparison of different schemes on velocity profiles, Re = lCK@, grid 64 x 64 
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At this stage we see that we have to find an intermediate scheme both stable and 
able to capture correctly the solution as soon as there are enough points to 
represent it. In order to improve the location of the phenomena we write another 
uncentered first-order scheme sensitive to the solution in the neighbourhood of the 
cell (i, j); that is, for uiP ,,2, j, 

n-l 
+ 2.L (u:&, i- 

Ax uz- l/2, j 1 if u?;l<O 

u7-’ 
I-1/2,j-112 

AY 
(“i--1/2,J-u1_:/2,J~L) if ~‘1 :,2 , - 1,2 > 0 

+ (4.3) 
VV1 

+ !+1/2,J+I/2 

AY 
(lq: I 112, J i 1 - U,- ljZ,.j) if v1~//2, j+ 112 < O, 

where u!-’ ,-i, j, u;; ‘, v:::,~, j- 1,2, and v;::,~, ji ,,2 can be seen as the mean compo- 
nent of the velocity in a left, right, bottom, and top cell of the current point 
(i - l/2, j), respectively. This scheme, inspired by Murman’s, is much more stable 
than the previous one and gives a quite good location of the extrema of velocity 
profiles (see Fig. 3) but, unfortunately, it needs many points to get the right 
amplitude as the scheme (4.2). We can remark that the convection terms in (4.3) are 
not written at point (i - l/2, j) but at points (i - 1, j), (i, j), (i - l/2, j - l/2), and 
(i- l/2, j+ l/2) instead; then the derivatives in these terms are approximated by 
centered second-order differences at these points. 

We propose finally to replace these derivatives by uncentered second-order 
differences at these neighbouring points. Let us denote by x one of these points; we 
can write Taylor’s formulas: 

u(x - h/2) = u(x) - h/2u’(x) + h2/8u”(x) + O(h3) 

u(x - 3h/2) = u(x) - 3h/2u’(x) + 9h2/8u”(x) + O(h3). 
(4.4) 

From (4.4) we have 

u’(x) = 
8u(x) - 9u(x - h/2) + u(x - 3h/2) 

3h + W2 ), 

and with linear interpolation of the unknown value u(x) we find for the first 
derivative: 

u,(x) = 4u(x + h/2) - 5u(x - h/2) + u(x - 3h/2) 
3h (4.5) 

581/X9/2-10 
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Instead of (4.4) or in addition to (4.4) we could have written Taylor’s series for 
U(X - h) and U(X + h/2); then we get many possible combinations to determine the 
first derivative with a second or third order of accuracy. Among all these 
possibilities the good formulas have the form: 

u’(x) = 
cru(x + h/2) - (a + 1) u(x -h/2) + u(x - 3/z/2) 

(m-1)h 
with cr=3,4,5,7, 13; 

the two latest are of third order. These formulas correspond to introducing an anti- 
diffusion term (h tul/(cl - 1)) U”(X), which reduces the artificial diffusion contained 
in the first-order scheme (4.3). For CI = 3 the resulting scheme is very unstable even 
with small relaxation parameters. On the contrary, all the other values of LY yield 
a stable scheme that gives better results than (4.3). Thus, as c1 increases, the scheme 
is more stable and the results are not as good because there is more and more 
artificial diffusion in the scheme; the case CI = 4 can be seen as a limit of stability 
and, as is often the case, gives the best results. Finally, the value c1= 4 yields the 
proposed scheme ( 1.5 ). 

In Fig. 3 we compare this scheme with (4.2) and (4.3) schemes and those used by 
Vanka in [9]. We see that for Re = 1000 and a medium mesh of 64 x 64 cells the 
scheme (1.5) gives a good location and amplitude of the extrema of velocity profiles. 
The results on a finer mesh are in good agreement with the results presented in 
[S-lo, 141 as shown in Table II, although the secondary vortices are larger with 
the present scheme; we think that this is due to the fact that our scheme is less 

TABLE II 

Comparison of Solutions for Re = 1000 

Extrema of velocity profiles along centerlines 

%n,n Y,,” ~lmu hmx V,i” Xtn,” 

Ghia, Ghia, and Shin -0.3829 0.1719 0.3709 0.1563 -0.5155 0.9063 
Vanka (“) -0.3798 0.1680 0.3669 0.1563 -0.5186 0.9102 

Zhang -0.3901 0.1699 0.3785 0.1582 -0.5284 0.9082 
Present method (“) -0.3764 0.1602 0.3665 0.1523 -0.5208 0.9102 

Extrema of stream function 
Primary vortex Secondary vortex Secondary vortex 

bottom right bottom left 
@ (location) @ (location) @ (location) 

Ghia, Ghia, and Shin -0.1179 (0.5313, 0.5625) O.l75E-2 (0.8594, 0.1094) 0.231E-3 (0.0859, 0.0781) 
Schreiber and Keller -0.1160 (0.5286, 0.5643) O.l70E-2 (0.8643, 0.1071) 0.217E-3 (0.0857, 0.0714) 

Vanka (“) -0.1138 (0.5313, 0.5664) O.l64E-2 (0.8672, 0.1133) 0.238E-3 (0.0820, 0.0781) 
Zhang -0.1193 (0.5313,0.5664) O.l74E-2 (0.8633,0.1133) 0.235E-3 (0.0820,0.0781) 

Present method (“) -0.1163 (0.5313, 0.5586) O.l91E-2 (0.8711, 0.1094) 0.325E-3 (0.0859, 0.0820) 

’ Results computed in this work on a 2&r * 256 grid. 
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diffusive. Moreover, we see in Fig. 4 that the results obtained on the 64 x 64 mesh 
are already closed to the solution and closer than those obtained with Vanka’s 
scheme (Fig. 3). In this last scheme the diffusion term and the convection term are 
closely linked and the diffusion term is suppressed as soon as the convection term 
prevails. We can write [D,Ju, o)]~~,~, + [C,(u, u)](~, jj for the unknown ui- l,z, j as 

r 
Tut- l/Z, j- uYlL3/2,,) I ‘Y-ll,i tu _ 1 n--l 

Re( Ax)* 
2Ax t 12,jwui-312.j) 

1 
if 

<Re(dx)z 

otherwise 

if 
1 

<Re(dx)z 

otherwise 

("i-*i2.j-u:'~~~2,,+~+v~~~,2,j+1/2~u~~~,2 j, 

2Ay ’ ’ 
+ 

otherwise, 

l- Grid 169~16 
2- Grid 32*32 
3- Grid 64*64 
4- Grid 128*128 
5- Grid 256*256 

FIG. 4. Evolution of velocity profiles along centerlines with different grids, Re = 1000. 
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where ~4::: j, Ur7’9 V~I~,2 j-1/2, and VrIl$ j+ 112 are defined as in (4.3). We see that 
this scheme is ‘a good intermediate between the centered scheme (4.1) and the 
scheme (4.3), which could be the key of its success. Nevertheless, the suppression of 
the diffusion term in some cases can decrease its stability and explain the difficulties 
to get the solution for Reynolds number equal to 5000. To close this section we add 
that the scheme presented in [14] is the same as (4.2) with a second-order 
approximation of the derivatives of the form 

u'(x) = 
3u(x)-4u(x-h)+ U(X-2h) 

2h 

It gives good results but is not very stable, either, as we have seen above for c( = 3. 
We do not pretend to make an exhaustive discussion about the schemes but hope 

to shed some light on the difficult problem of the approximation of convection 
terms. 

We close this section by giving the extrapolation at the boundary; as the scheme 
(1.4)-( 1.5) uses second-order derivatives we take a parabolic extrapolation written 
for the unknown u on the left-hand side as follows: 

u -l/2, j= 3"l/2,j- 3u3/2,j + u512.i 

and, at the bottom, 

ui- l/2,0 = h1/2,1/2 - 2Ui- l/2,1 + 4% l/2,2 

ui- l/2, -1 = 8ui- l/2,1/2 - 9ui- I/2,1 + 2ui- l/2,2. 

This extrapolation improves the representation of the boundary conditions and 
gives better results on coarse grids. But on fine meshes the first-order extrapolation 
yields about the same results. 

5. NUMERICAL RESULTS 

In this section we comment on some results in the square-driven cavity and in the 
rectangular cavity of the ratio-two aspect. These results are obtained with the 
simplified FMG-FAS algorithm and the finite differences schemes (1.4)-(1.5). 
Generally, the solution is initialized by zero on the starting grid of the FMG algo- 
rithm; but in some cases, particularly for high Reynolds numbers, it is initialized on 
this grid with the solution obtained for a lower Reynolds number. The pressure is 
also initialized by zero everywhere and is not fixed at any point. Indeed we know 
that the pressure is determined within a constant but this constant is given by the 
initialization; the relaxation procedure allows us to let the pressure free without 
getting overshoots. In fact, the results show that the pressure, in this case of zero 
initialization, is always less than one. 
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TABLE III 

Comparison of Efficiency with Vanka’s Scheme 

128 x 128 grid 256 x 256 grid 
w optimal Number of CPU time 0 optimal Number of CPU time 

iterations (seconds) iterations 

Vanka 0.6 20 53 0.5 10 1 min 41 s 
Present method 0.7 7 24 0.7 6 1 min 10 s 

First, we compare the efficiency of the present method with other methods. For 
Re = 1000 we get the solution on a 128 x 128 grid in only 24 s of SIEMENS 
VP 200. In [lo] with a stream function-vorticity formulation the same test requires 
1.5 min on the AMDAHL 47OV/6, which is of the same order of magnitude. But we 
can more precisely compare the efficiency of our scheme with Vanka’s scheme 
because we have tested both of them. In Table III we give a comparison for 
Re = 1000 on a 128 x 128 grid with the simplified FMG-FAS algorithm and on a 
256 x 256 grid with FAS algorithm and initialization by the solution obtained on 
the previous grid. We notice that the scheme (1.4)-( 1.5) is approximately twice as 

Rc 

TABLE IV 

Extrema of Velocity Profiles along Centerlines and Stream Functions 

loo 1000 5000 

%,” Yllli” 
~max xrnax 
~,I” XIII,” 

Primary vortex 

@ (location) 

Second. vortex 
bottom right 
@ (location) 

Second. vortex 
bottom left 

@ (location) 

Second. vortex 
top left 

@ (location) 

Tertiary vortex 
bottom right 
@ (location) 

Tertiary vortex 
bottom left 

@ (location) 

-0.2106 0.4531 -0.3764 0.1602 
0.1786 0.2344 0.3665 0.1523 

-0.2521 0.8125 -0.5208 0.9102 

-0.1026 (0.6172,0.7344) -0.1163 (0.5313,0.5586) 

O.l23E-4 (0.9453, 0.0625) O.l91E-2 (0.8711, 0.1094) 

O.l63E-5 (0.0313, 0.0391) 0.325E-3 (0.0859,0.0820) 

0.755E-3 (0.0039, 1.0000) 

-0.4359 0.0664 
0.4259 0.0762 

-0.5675 0.9590 

-0.1142 (0.5156, 0.5313) 

0.465E-2 (0.8301,0.0703) 

0.222E-2 (0.0664,O. 1484) 

O.l75E-2 (0.0625, 0.9102) 

-0.247E-4 (0.9668,0.0293) 

-0.306E-8 (0.0039,0.0039) -0.233E-6 (0.0117, 0.0098) 
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FIG. 5. Equidistant streamlines. 1 
Re = 100, 1000, and 5000. 

, . . . . . . ..------~----..~...‘. , 

tabulated streamlines, and velocity fields in the square cavity, 
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I U 

V 

X 

b 

FIG. 6. Details of the solution for Re = 5000: secondary vortices; tertiary vortices; velocity profiles 
along centerlines. 
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fast as Vanka’s scheme on the 128 x 128 grid and that the optimal relaxation 
parameter is larger. 

Table IV gives the main characteristics of the solution for Re = 100 on a 
128 x 128 grid, Re = 1000 on a 256 x 256 grid, and Re = 5000 on a 512 x 512 grid. 
In every case we observe a good convergence to the steady laminar solution with 
a residual rl less than 10P4. Let us notice that, in the three cases, we represent the 
solution on the finest grid reached by the FMG algorithm that stops when the 
solution does not change noticeably. The solution depends on the grid when the 
grids are coarse and is independent when the grids are liner. For instance, this is 
illustrated in Fig. 4, where we see that the solution is quite different on the coarse 
grids until 64 x 64 and then is the same on the grids 128 x 128 and 256 x 256. In this 
case the grid 256 x 256 is very line with respect to Reynolds number 1000 but 
confirms the stability of the solution. We can affirm that we get a steady laminar 
solution until Re = 5000. 

Moreover, in accordance with [S], the minimum of the stream function increases 
between Re = 1000 and Re = 5000. In Figs. 5 and 6 these solutions are plotted in 
the square cavity with details of secondary and tertiary vortices for Re = 5000. The 
streamlines plotted on the figures are either equidistant with a step of lop3 (the 
separation lines represented by level zero are denoted by 0) or fixed to forty given 
values. These values are listed in Table V. 

Now we notice a very interesting behaviour of the computation process for 
Re= 7500 and Re = 10,000. Indeed, on coarse grids (until 128 x 128 for 
Re = 10,000) there is no convergence of the residual; on the 256 x 256 grid there is 
a good convergence to a steady laminar solution (Fig. 7) and on the finer 512 x 512 
grid there is no convergence any more (the residual decreases at the beginning and 
then oscillates around a value) and apparition of new small eddies (Fig. 8). In this 
late case the relaxation procedure can be seen like a time procedure, and then we 

TABLE V 

Values of the Streamlines 

Contour 
letter 

Value 
of@ 

Contour 
letter 

Value 
of@ 

Contour 
letter 

Value 
of@ 

Contour 
letter 

Value 
of@ 

Y -0.1 t 
x -0.08 s 
w -0.06 r 
” -0.04 P 
u -0.02 n 

M 

k 

- l.E-2 
- 3.E-3 
- l.E-3 
- 3.E-4 
- l.E-4 
- 3.E-5 
- l.E-5 
- 3.E-6 
- l.E-6 
- l.E-7 
- l.E-8 
- 1 .E-9 

Ii 
- l.E-10 
-l.E-11 

s 
- l.E-12 
- l.E-13 

a - l.E-14 
0 0 

; 

l.E-14 
l.E-13 

Y l.E-12 
6 l.E-11 
E l.E-10 

i l.E-9 

v l.E-8 
0 l.E-7 
I l.E-6 
K 3.E-6 
I l.E-5 

P 3.E-5 

; 

l.E-4 
3.E-4 

P l.E-3 
(r 3.E-3 
T l.E-2 
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FIG. 7. Converged solutions with the 256 x 256 grid, Re = 7500 and 10,000. 

FIG. 8. Small perturbations along the walls in the corners for Re = 7500 with the 512 x 512 grid. 
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observe an evolution of the small eddies along the walls. Our explanation for this 
behaviour is the following: if there is no points in the boundary layer, the solution 
cannot be represented properly and the method does not converge. We know that 
the thickness of the boundary layer is of the order of l/,,/%; so this explains the 
non convergence on coarse grids. For smaller values of the mesh size the process 
converges to the steady laminar solution if it exists; this is the case for Re = 5000, 
for instance. But, as we use a steady model, the method can converge artificially on 
quite line grids as long as the mesh size is not line enough to take into account the 
instabilities. This is the case for Re = 7500 and Re = 10,000 on the 256 x 256 grid. 
The Kolmogorov length is of the order of 1/Re3j4 and according to Kolmogorov 
and [S] we need a mesh size as small as this to capture the turbulence. So it seems 
that there is no laminar solution any more for these two Reynolds numbers and 
that, as soon as the mesh size is small enough to represent the phenomena, the 
method cannot converge. We see that the converged solutions on the 256 x 256 grid 
exhibit small eddies along the wall in addition to the usual secondary and tertiary 
vortices in the corners (the main characteristics of these solutions are listed in 
Table VI). Then unstable flow on the grid 512 x 512 for Re = 10,000 is plotted on 
Fig. 9. 

Now starting with the solution obtained on the 256 x 256 grid for Re = 10,000, 
we run the code on this grid for higher Reynolds numbers up to 15,000. Then we 
see small eddies developing along the walls which move during the iterations as 
shown on Fig. 10 for Re = 11,000 and the apparition of strange structures like a 
double center vortex for Re = 15,000 (Fig. 11). Finally, we conjecture that beyond 

TABLE VI 

Extrema of Velocity Profiles along Centerlines 
and Stream Functions of the Solution with the 256 x 256 Grid 

Re 7500 10,000 

%un Ymm 
“¶tl,X xmlx 
“Illi” Xrnin 

Primary vortex 

@ (location) 

Second. vortex 
bottom right 
@ (location) 

Second. vortex 
bottom left 

@ (location) 

Second. vortex 
top left 

@ (location) 

-0.4379 0.0508 -0.4373 0.0430 
0.4179 0.0625 0.4141 0.0547 

-0.5640 0.9688 -0.5610 0.9727 

-0.1113 (0.5156, 0.5234) -0.1053 (0.5156, 0.5234) 

0.832E-2 (0.8828, 0.0820) 0.986E-2 (0.8945, 0.0820) 

0.476E-2 (0.0703,0.1289) 0.623E-2 (0.0781, 0.1133) 

0.314E-2 (0.0664, 0.9141) 0.4038-2 (0.0664, 0.9141) 
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FIG. 9. Evolution of the solution during iterations for Re = 10,000 with the 512 x 512 grid. 

FIG. 10. 
150 

Appearance and disappearance of small eddies for Re = 11,000 with the 256 x 256 grid, 50 and 
iterations. 
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FIG. 11. Solution after 150 iterations for Re = 15,000 with the 256 x 256 grid 

FIG. 12. Streamlines and u velocity profile along centerline in the rectangular cavity, Re = 100 and 400 
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TABLE VII 

Extrema of u Velocity Profile along Centerline and Stream Function 

Re 100 400 1000 

4m” YInI” -0.1968 1.4531 -0.3146 1.2578 -0.3851 1.1680 
%ax Y,.V 0.00195 0.3438 0.01781 0.5703 0.03 102 0.5 

Primary vortex 
top -0.1033 (0.6172, 1.7344) -0.1124 (0.5547, 1.5938) -0.1169 (0.5273, 1.5625) 

@ (location) 

Primary vortex 
bottom 0.783E-3 (0.5391,0.5859) 0.909E-2 (0.4297,0.8125) 0.0148 (0.3516, 0.7891) 

@ (location) 

Second. vortex 
bottom left -O.l49E-7 (0.0313, 0.0313) -0.257E-6 (0.0391,0.0469) -O.l08E-4 (0.0977,0.1094) 

@ (location) 

Second. vortex 
bottom right” -0.335E-6 (1.0000,0.3750) -O.l46E-6 (0.9688, 0.0391) -0.459E-4 (1.0000,0.3750) 
@ (location) 

y This last vortex is quite unstable during iterations. 

FIG. 13. Streamlines and II velocity profile along centerline in the rectangular cavity, Re = 1000 
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Re = R, with 5000 < R, < 7500 there is not a steady laminar solution any more and 
the transition to turbulence occurs when small eddies develop along the walls. 

Let us conclude this section with some results in the rectangular cavity of aspect 
ratio equal to two. The main results are listed in Table VII for Re = 100 and 400 
on a uniform 128 x 256 grid and for Re = 1000 on a 256 x 512 grid. Illustrations are 
plotted on Figs. 12 and 13. We notice, as indicated in Table I, that the optimal 
relaxation parameter is very small with respect to the square cavity. We believe that 
this limit of stability is due to the complexity of the solution in this case and that 
the transition to turbulence should appear for R, quite close to 1000. In [13] a 
Hopf bifurcation is expected in this cavity for 2000 < R, < 10,000. 

CONCLUSION 

In this work a new scheme for the discretization of convection terms of 
Navier-Stokes equations is proposed. Coupled with a simplified FMG-FAS algo- 
rithm and a cell by cell relaxation procedure this scheme is very stable and efficient. 
The steady laminar solution is computed for Re = 1000 on a 128 x 128 grid in 24 s 
and for Re = 5000 on a 5 12 x 512 grid in half an hour of CPU time on a SIEMENS 
VP 200. 

The results are in good agreement with other published results in the square 
driven cavity for Reynolds number less or equal to 1000. The solutions computed 
in this work exhibit a very good representation of secondary and tertiary vor$ces. 
It appears that the solution is laminar for Re < 5000 and becomes unstable for the 
steady model with Re = 7500 on the fine 512 x 512 grid when small eddies develop 
along the walls in the corners. We hope to confirm these results with further works 
on the unsteady Navier-Stokes equations. 

Finally, some results are given in the rectangular driven cavity of aspect ratio 
equal to two and a parallel is made with results obtained in the square cavity. It 
seems that the flow is much more complex in the rectangular cavity and the limit 
of stability is reached in this case for Re = 1000 although a steady laminar solution 
is still captured for this Reynolds number. 
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